ANNUAL WAARDER OUALITATION DE COMPANSA DE

Presented By Paintsville Utilities

PWS ID#: KY0580340

Our Mission Continues

We are proud to present once again our annual water quality report covering all testing performed between January 1 and December 31, 2014. Most notably, last year marked the 40th anniversary of the Safe Drinking Water Act (SDWA). This rule was created to protect public health by regulating the nation's drinking water supply. We celebrate this milestone as we continue to manage our water system with a mission to deliver the best quality drinking water. By striving to meet the requirements of SDWA, we are ensuring a future of healthy, clean drinking water for years to come.

Please let us know if you ever have any questions or concerns about your water.

Community Participation

You are invited to participate in our public forum and voice your concerns about your drinking water. We meet the first Monday of each month beginning at 5 p.m. at the Utilities Building,137 Main Street, Paintsville, Kentucky.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/ drink/hotline.

Substances That Could Be in Water

To ensure that tap water is safe to drink, U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, in some cases, radioactive material; and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects may be obtained by calling the U.S. Environmental Protection Agency's Safe Drinking Water Hotline at (800) 426-4791.

How Long Can I Store Drinking Water?

The disinfectant in drinking water will eventually dissipate even in a closed container. If that container housed bacteria prior to filling up with the tap water the bacteria may continue to grow once the disinfectant has dissipated. Some experts believe that water could be stored up to six months before needing to be replaced. Refrigeration will help slow the bacterial growth.

Benefits of Chlorination

Disinfection, a chemical process used to control disease-causing microorganisms by killing or inactivating them, is unquestionably the most important step in drinking water treatment. By far, the most common method of disinfection in North America is chlorination.

Before communities began routinely treating drinking water with chlorine (starting with Chicago and Jersey City in 1908), cholera, typhoid fever, dysentery, and hepatitis A killed thousands of U.S. residents annually. Drinking water chlorination and filtration have helped to virtually eliminate these diseases in the U.S. Significant strides in public health are directly linked to the adoption of drinking water chlorination. In fact, the filtration of drinking water plus the use of chlorine is probably the most significant public health advancement in human history.

How chlorination works:

- Potent Germicide Reduction in the level of many disease-causing microorganisms in drinking water to almost immeasurable levels.
- Taste and Odor Reduction of many disagreeable tastes and odors like foul-smelling algae secretions, sulfides, and odors from decaying vegetation.
- Biological Growth Elimination of slime bacteria, molds, and algae that commonly grow in water supply reservoirs, on the walls of water mains, and in storage tanks.
- Chemical Removal of hydrogen sulfide (which has a rotten egg odor), ammonia, and other nitrogenous compounds that have unpleasant tastes and hinder disinfection. It also helps to remove iron and manganese from raw water.

Water Conservation

You can play a role in conserving water and saving yourself money in the process by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. Here are a few tips:

- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity.
- Turn off the tap when brushing your teeth.
- Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak. Fix it and you save more than 30,000 gallons a year.
- Use your water meter to detect hidden leaks. Simply turn off all taps and water using appliances. Then check the meter after 15 minutes. If it moved, you have a leak.

For more information about this report, or for any questions relating to your drinking water, please call Eric Ratliff, General Manager, at (606) 789-2630 or Larry Crum, Water Plant Superintendent, at (606) 789-2636.

Source Water Assessment

A Source Water Assessment Plan (SWAP) is now available at the Johnson County Library. This plan is an assessment of the delineated area around our listed sources through which contaminants, if present, could migrate and reach our source water. It also includes an inventory of potential sources of contamination within the delineated area, and a determination of the water supply's susceptibility to contamination by the identified potential sources. Potential contaminant sources of concern include one major road, seven bridges and culverts, 10 Kentucky Pollutant Discharge Elimination System permit sites, one airport, and two railroads. Each of these potential sources of contamination is rated high in the susceptibility table because of the contaminant type, its proximity, and high chance of release.

Where Does My Water Come From?

Ur water is drawn from Levisa Fork of the Big Sandy River and is surface water source. The treatment plant is located on River Road and has the capacity of 3 million gallons per day.

Water Treatment Process

The treatment process consists of a series of steps. First, raw water is drawn from our water source and sent to a rapid mix tank, where polyaluminum chloride and chlorine are added. The addition of these substances cause small particles to adhere to one another (called "floc"), making them heavy enough to settle into a basin from which sediment is removed. At this point, the water is filtered through layers of fine coal and silicate sand. As smaller, suspended particles are removed, turbidity disappears and clear water emerges. Chlorine is added again as a precaution against any bacteria that may still be present. (We carefully monitor the amount of chlorine, adding the lowest quantity necessary to protect the safety of your water without compromising taste.) Fluoride (used to prevent tooth decay) and a corrosion inhibitor (used to protect distribution system pipes) are added before the water is pumped to sanitized, underground reservoirs, water towers, and into your home or business.

Lead in Home Plumbing

f present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa. gov/safewater/lead.

When was drinking water first regulated?

The Safe Drinking Water Act (SDWA) of 1974 represents the first time that public drinking water supplies were protected on a federal (national) level in the U.S. Amendments were made to the SDWA in 1986 and 1996.

How much water do we use every day?

The average person in the U.S. uses 80 to 100 gallons of water each day. (During medieval times, a person used only 5 gallons per day.) It takes 2 gallons to brush your teeth, 2 to 7 gallons to flush a toilet, and 25 to 50 gallons to take a shower.

When was chlorine first used in the U.S.?

In 1908, Jersey City, New Jersey, and Chicago, Illinois, were the first water supplies to be chlorinated in the U.S.

Seventy-one percent of Earth is covered in water: how much is drinkable?

Oceans hold about 96.5 percent of all Earth's water. Only three percent of the Earth's water can be used as drinking water. Seventy-five percent of the world's fresh water is frozen in the polar ice caps.

How much water is in our atmosphere?

Forty trillion gallons of water are carried in the atmosphere across the U.S. each day.

How much water is in our bodies?

Water makes up almost two-thirds of the human body and 70 percent of the brain.

How long can a person go without water?

Although a person can live without food for more than a month, a person can live without water for only approximately one week.

Is tap water cheaper than soda?

Yes! You can refill an 8 oz. glass of tap water approximately 15,000 times for the same cost as a six-pack of soda pop. And water has no sugar or caffeine.

Sampling Results

During the past year we have taken hundreds of water samples in order to determine the presence of any radioactive, biological, inorganic, volatile organic or synthetic organic contaminants. The table below shows only those contaminants that were detected in the water. The state requires us to monitor for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

REGULATED SUBSTANCES

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Barium (ppm)	2014	2	2	0.072	ND-0.072	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Chlorine (ppm)	2014	[4]	[4]	1.53	0.84-2.22	No	Water additive used to control microbes
Fluoride (ppm)	2014	4	4	0.70	0.70–1.38	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Haloacetic Acids [HAA]–Stage 2 (ppb)	2014	60	NA	41.5	15–94	No	By-product of drinking water disinfection
Nitrate (ppm)	2014	10	10	0.40	ND-0.40	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
TTHMs [Total Trihalomethanes]– Stage 2 (ppb)	2014	80	NA	60.25	17–113	No	By-product of drinking water disinfection
Total Organic Carbon ¹ (removal ratio)	2014	ΤT	NA	1.55	1.0-2.30	No	Naturally present in the environment
Turbidity ² (NTU)	2014	ΤT	NA	0.28	0.05-0.28	No	Soil runoff
Turbidity (Lowest monthly percent of samples meeting limit)	2014	TT=95% of samples <0.3 NTU	NA	100	NA	No	Soil runoff

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH%TILE)	SITES ABOVE AL/ TOTAL SITES	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2012	1.3	1.3	0.074	0/30	No	Corrosion of household plumbing systems; Erosion of natural deposits

¹ Monthly ratio is the % TOC removal achieved to the % removal required. Annual average of the monthly ratio's must be 1.00 or greater for compliance. ² Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of the effectiveness of the filtration system.

Definitions

AL (Action Level): The concentration of a contaminant, which if exceeded, triggers treatment or other requirements which a water system shall follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal):

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant

Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant

Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NTU (Nephelometric Turbidity Units):

Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

removal ratio: A ratio between the percentage of a substance actually removed to the percentage of the substance required to be removed.

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.